
Journal of Statistical Physics, Vol. 26, No. 2, 1981 

The Ground State for Soft  Disks 1 

Charles Radin 2 

Received December 19, 1980 

We consider some two-dimensional models of point particles interacting through 
short-range two-body potentials and prove that their zero temperature, zero 
pressure states are crystalline. 
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1. INTRODUCTION 

It is often said that the study of the solid-fluid phase transition is ham- 
pered by the impossibility (1) of relevant models in one and two dimensions. 
We refer here to classical mechanical models of point particles in R", 
interacting through "reasonable" two-body potentials, i.e., with strong 
repulsion at short separation, a unique minimum, and weak attraction at 
large separation. (Such models are meant to simulate molecular bonded 
matter; there are other types of classical mechanical models relevant to 
metallic bonding--see, e.g., Ref. 2. The preference of classical over quan- 
tum mechanical models is dictated by the relative lack of computational 
power in the latter.) 

Although Mermin's theorem (1) seems to rule out the possibility of true 
crystal ordering in two dimensions (at nonzero temperature), there has been 
growing interest (2) in recent years in the possibility of a weaker form of 
ordering termed "orientational;" the former refers to long-range positional 
correlation, as evidenced in material crystals by X-ray scattering, while the 
latter refers to the long-range correlation of bond angles, as is evidenced in 
material crystals by the angles between faces. 

Although much theoretical work has been done predicting the behav- 
ior of the two-dimensional systems, there is in fact the noticeable lack of a 
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demonstration that any "reasonable" model actually exhibits orientational 
ordering. (There is an "unreasonable" model with the property in Ref. 1.) 

This paper is meant to contribute in this direction. Herein we consider 
some models and show that at least they behave well at zero temperature 
and pressure they are shown to be perfectly crystalline under these 
circumstances. We have previously shown this for a "sticky disk" model (3) 
(see also Refs. 4-6) but since this model has a delta function interaction it 
is not well suited to nonzero temperatures. The present models are so suited 
and it is hoped that the techniques developed here will be of help for 
computations at nonzero temperatures. 

Finally we note that although from the group invariance point of view 
one might expect there to be advantages in working directly with infinite 
systems of particles, there does not seem to be a formalism well enough 
developed; see Ref. 7. However, see Refs. 8-10 for related work on the type 
of crystal to be expected for given potentials. 

2. NOTATION AND STATEMENT OF RESULTS 

We consider configurations of n/> 1 points in the plane: pj, j = 
1 . . . . .  n. They interact through a potential, V, dependent only on the 
distance of separation rjk = IPj --Pk]" V will have a hard core (radius 1) and 
will be of strictly finite range R > 1. Although our proofs will clearly hold 
for a class of potentials, the class does not seem of particular interest. Thus 
the results will refer only to the following specific example: 

~ + ~ ,  O < r < l  
V ( r ) = ] 2 4 r - 2 5 ,  1 < r < 2 5 / 2 4  

~0, 25/24 ~< r < 

Each pair of points whose separation r satisfies 1 ~< r < R (=  25/24) 
will define a "bond" which is represented by the shortest line segment 
containing the two points. A configuration of n points will be called 
"minimal" or a "ground state" if, for that configuration, the total potential 
energy 

E = l j~kV(5k)  

is minimal as compared with all configurations with n points (n fixed). 
If we restrict consideration to configurations with all bonds of unit 

length, then it has been shown (3,H) that the minimal energy is - [ 3 n -  
(12n - 3) 1/2] (where [x] is the greatest integer less than or equal to the real 
number x), and also (3) that for any minimal configuration there is some 
orientation of the triangular lattice containing all the points. In this paper 
we extend these results as follows. 
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Theorem. In a ground state for V all bonds are necessarily of unit 
length. 

Corollary. The ground states for V are subsets of the triangular 
lattice, thus crystalline. 

Our arguments are basically geometrical and concern the planar 
"bond graphs" of configurations, i.e., the graphs composed of the bonds of 
configurations. It will therefore be useful to call the points of a configura- 
tion "vertices" of the corresponding graph. 

Finally we note that it is easy to check that every minimal configura- 
tion has the following properties: (a) each vertex is contained in at least two 
bonds; (b) the bond graph decomposes the plane into "elementary" poly- 
gons with each side being a bond (a polygon is elementary if it contains no 
vertex in its interior); (c) the bond graph has a simple closed polygonal 
boundary. 

3. THE GROUND STATE ENERGY 

It will be convenient to "associate" a certain energy with each bound- 
ary vertex of a minimal configuration, namely, the sum of half the energy 
of each of the two boundary bonds containing it together with the energy 
of all other bonds containing it. 

I .emma 1. If Eg is the energy associated with the kth boundary 
vertex of a minimal configuration and if A~ is the internal angle of the 
boundary at that vertex, then 

levi ~< Ak/(~/3)  (1) 

Proof. If the vertex is contained in exactly j bonds, consider Ek as 
the sum, over each of the ( j  - I) subangles A of A k, of half the energy of 
each of the two bonds defining A. If every A is at least 7r/3 (1) is obvious, 
so assume that at least one of them has the value A = (1 - z)Tr/3, 0 < z 
< 1/22. (This range for z is easily seen to suffice for all possibilities.) Of the 
two bonds defining A, one sees that at least one has length L satisfying 

L/> 1/2sin((1 - z)~r/6) 

But then 

L/> 1/(2 sin(~r/6)cos(zTr/6) - 2 cos(~r/6)sin(z~r/6)) 

> 1 / (1  - 3 ' / 2 z / 2 )  

where we used the fact that 0 < z~r/6 < ~r/6 so that sin(zTr/6)> z/2. 
Since the absolute value of the energy associated with A is less than or 
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equal to �89 + [V(L)I/2,  if we show that IV(L) I /2  <1 - z  for 0 < z < 1/22 
the proof is complete. But this inequality follows if 

o r  

o r  

IV( l / (1  - 3'/2z/2))1 < l - 2z = 1 - (4/31/2)(31/2Z/2) 

l V(1/(1 - y))l < 1 - (4/3~/2)y 

I V ( r ) l  < l - ( 4 1 3 1 / 2 ) ( I  - I / 0  = l - 4 1 3  I/2 + 

It is easily seen that the given potential V satisfies this last inequality over 
the necessary range, l < r < 50/(50 - 3112), which completes the proof. [] 

We note the following corollary of the proof. 

Corollary. The inequality (1) is strict unless all subangles of A k are 
exactly vr/3. 

The next three lemmas are extensions of the methods of Refs. 3 and 
II. 

Lemma 2. The energy of any configuration of n points is bounded 
below by - (3n - (12n - 3)I12). 

Proof. Let E be the energy of a minimal configuration C of n points, 
exactly d of which are boundary vertices of the associated bond graph. Let 
E '  be the energy of the configuration C'  obtained from C by removing the 
boundary points. We have 

d 

k = l  

where E k is the energy associated with the kth boundary vertex. From 
Lemma I and the elementary formula for the sum of the internal angles of 
a polygon we get our first basic inequality: 

IEI < 1E'1 + 3 d -  6 (2) 

Next apply Euler's formula to the bond graph of C: if Fj is the number 
of elementary polygons in the graph with j sides, if F = ~ jFj ,  and B is the 
number of bonds in C, 

n + F = B + I  (3) 

If the number of sides of all elementary polygons are added, boundary 
sides are counted once and interior sides twice, yielding 

d + 2(B - d ) =  ~ jFj> 3F (4) 
j>~3 
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Eliminating F between (3) and (4) implies the other basic inequality: 

B < < . 3 n - d - 3  

o r  

f rom which we obtain 

o r  

n - d > > . B - 2 n + 3  

IEI < 3n - d -  3 

n -  d >~ lEI - 2n + 3 

We are at tempting to prove 

IEI ~< 3n - (12n - 3) '/2 

(5) 

(53 

(6) 

(6') 

(7) 

which we will do by induct ion on n. (7) clearly holds for  n = 1. Assume it 
holds for all m, 1 < m < n. It follows that 

[E '  I < 3(n - d )  - (12(n - d )  - 3) 1/2 

F rom (2) 

IE 1 ~< 3(n - d) - ( 1 2 ( n  - d )  - 3 ) 1 / 2 +  3 d -  6 

< 3n - 6 -  (12(n - d )  - 3) '/2 

Then  using (6') this becomes 

[E I < 3 n -  6 -  (12IE I - 24n + 33) 1/2 (8) 

It is easy to check by eliminating the square root  that the only solution of 
the equation x = f ( x ) ,  where f ( x )  = 3n - 6 - (12x - 24n + 33) 1/2, is x = 
3n - (12n - 3) 1/2. Since f is a decreasing funct ion of x,  (8) implies (7), 
which completes the induct ion and proves the lemma. [] 

Note:  the basic argument,  whereby (2) and (6') imply an upper  bound  
for I E [, will be used four more  times below with variations. 

L e m m a  3. For  1 < n < 12, the number  of bonds in any configura- 
tion of n points and finite energy is bounded  above by [3n - (12n - 3)1/2]. 

Proof.  Defining a maximal  configurat ion to be one with the maximal  
possible number  of bonds  in the class of all configurations of finite energy 
and the same number  of points, it is easily seen that  a maximal  configura- 
tion has a bond  graph with the same properties (a), (b), and (c) we noted 
for minimal  configurations at the beginning of this section. Let  K be a 
maximal  configurat ion of n points, d boundary  points, and B bonds.  Our  
justification of 

B < 3 n -  d -  3 (5) 
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carries over to maximal configurations such as K. But we will need a 
replacement of (2). 

A vertex will be said to be "of type j "  if it is contained in exactly j 
bonds, and kj will be the number of type-j vertices in the boundary of K. 
Let K'  be the configuration obtained from K by removing the boundary 
points, and assume K'  has B'  bonds. Then 

6 

B <~ B ' +  Z ( J -  1)kj (9) 
j = 2  

From Ref. 3 or 11 we know how to construct configurations /~ with n 
points, d boundary points, and/~ bonds such that 

= 3 . -  d -  3 (5) 

and we note that a~<9 for n <  12. Clearly then, d < 9  since we are 
assuming n < 12. Consider the interior angle at a boundary vertex of type j  
for K. Using the range of V such an angle is seen to be larger than 
( j  - 1)(~r/3)(21/22). The sum of all interior angles of the boundary of K is 
then 

6 
~d - 2qr > 2 (J - 1)(~/3)(21/22)kj 

j = 2  

and so 
6 

( j -  l ) k j < ( 3 d -  6)(22/21) 
j = 2  

Since d ~< 9, we have the integer inequality Ej6=2 (J ' -  1)kj < 3d - 6 which 
together with (9) yields 

B <  B ' + 3 d - 6  (2) 

Now just as (2) and (5) lead to (7), (2) and (5) lead to B < 3n - (12n - 
3) I/2, which concludes the proof on noting that B is integral. [] 

Lemma 4. The energy of any minimal configuration of n points is 
- [3n  - (12n - 3)1/2]. 

Proof. Let C be a minimal configuration with n points, d boundary 
points, and energy E. As noted above, configurations with [ 3 n -  ( 1 2 n -  
3) 1/2] unit length bonds are constructable for any n, so we need only prove 

IE I < [ 3 n - ( 1 2 n -  3) '/= ] (if) 

From Lemma 3 we know this holds for 1 < n < 12. To prove (if) for n t> 13 
we use induction. Assume ('7) holds for 1 < m < n, in particular for IE'{, 
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Then from (2) 

[El <[3(n  - d ) -  (12(n - d ) -  3) '/2] + 3 d - 6  

< an - 6 -  (12(n - d) - 3) 1/2 

Then using (6') this becomes 

iEI <[3n- 6 - ( 1 2 [ E l -  24n + 33) 1/2 ] 

Consider again the equation x = f(x),  where f(x) = 3n - 6 - (12x - 24n + 
33) 1/2. In the proof of Lemma 2 we noted that x = 3n - (12n - 3) ./2 is a 
solution of the equation x = f(x). We now show that x = [ 3 n -  ( 1 2 n -  
3) '/2] is a solution of the equation x = If(x)] if n >/ 13. Since [fix)] is 
decreasing in x, this will complete the induction and the proof. 

Since the inequality 

[3n - ( 1 2 n  - 3) '/2 ] ~<I3n - 6 - ( 1 2 1 3 n - ( 1 2 n  - 3) ./2 ] - 24n + 33) 1/2 ] 

follows from the solution of x = f(x),  we need only show 

[3n - ( 1 2 n  - 3) ./2 ] ~>I3n - 6 - ( 1 2 1 3 n  - ( 1 2 n  - 3) '/2 ] - 24n + 33)'/2 l 

Let s = 3n - (12n - 3) ./2 - [3n - (12n - 3)'/2]. Then 

I 3 n - 6 -  (1213n - ( 1 2 n -  3) ./2 ] - 24n + 33) '/2] 

= [3n - 6 - ( 1 2 ( 3 n  - ( 1 2 n  - 3) ./2 ) - 1 2 s -  24n + 33) 1/2 ] 

= [ 3 n - 6 - ( ( ( 1 2 n - 3 ) l / 2 - 6 )  2 -  12s) '/2] 

= [ 3 n -  6 - ( ( 1 2 n -  3 ) 1 / 2 - 6 ) ( 1 - 1 2 s / ( ( 1 2 n - 3 ) V 2  - 6)z)'/21 

Since 12s/((12n - 3) 1/2 - 6) 2 < 1 for n/> 13, 

f 3 n - 6 - ( ( 1 2 n - 3 ) ' / 2 - 6 ) ( 1 - 1 2 s / / ( ( 1 2 n  - 3 ) ' / 2 -6 )2 )  1/2] 

< [ 3 n - 6 - ( ( 1 2 n - 3 ) ' / 2 - 6 ) ( 1 - 6 s / ( ( 1 2 n  - 3) I /2 -6 )2 ) ]  

< [ 3 n -  6 -  ( ( ( 1 2 n -  3) ' / 2 -  6) - 6s/((12n - 3) . / 2 -  6))] 

< ~ f 3 n - 6 - ( ( 1 2 n - 3 ) l / 2 - 6 ) ]  

since 6 s / ( ( 1 2 n -  3) ' / 2 -  6 )<  s and so cannot affect the integer part of 
((12n - 3) ./2 - 6). This concludes the proof. [] 
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4. THE SPATIAL FORM OF THE GROUND STATES 

Let C be a minimal configuration of n points. We want to prove that 
all bonds in C must be of unit length. For n < 12 this follows from Lemmas 
3 and 4. So we assume n > 13 and use induction on n. Assume the result 
for all m, 1 < m < n. Now assume further that there is an elementary 
polygon in the bond graph of C with at least four sides. (This will lead to a 
contradiction.) From (4) we get 

2B - d > 3F + 1 

which together with (3) implies 

(n - d)  > (IE[ + 1) - 2n + 3 (6') 

Consider 
d 

IEI < [E'[ + ~ IEkl (10) 
k = !  

If the nontriangle is in C', then from Ref. 3 we know that 

[E' I < [ 3 ( n -  d ) - ( 1 2 ( n -  d ) -  3) '/2] - I 

If on the other hand the nontriangle meets the boundary of C, we know 
from the corollary of Lemma 1 that 

d 

E IEk[ < 3d - 6 
k = l  

In either case then, (10) implies 

IEI < [ 3 n  - 6 - ( 1 2 ( n  - d )  - 3) I /2]  

which, with (6') yields 

IEI <[3n  - 6 - (12(IEI + 1) - 24n + 33) 1/2] 

But then there exists c > 0 such that 

IEI + c < [ 3 n - 6 - ( 1 2 ( I E  I + c ) -  24n + 33) 1/2] 

As in the proof of Lemma 4, this implies 

IEI + c < [ 3 n -  ( 1 2 n -  3) 1/2] 

which is in contradiction with C being minimal, showing that all elemen- 
tary polygons in C must be triangles. Thus any nonboundary vertex of the 
bond graph of C is contained in six bonds. Also it now follows from (4) 
that the number of bonds in C satisfies 

B- -  3 n -  d -  3 (5) 
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Adding  over the vertices the number  of bonds  containing each vertex, we 
get 

2B / > 6 ( n - d ) + 2 d + ( B - B ' - d )  

or 

B / > 6 n - 5 d - B '  

Eliminating n f rom (11) and  (g) we again get 

B < B ' + 3 d - 6  

N o w  just  as (2) and  (5) lead to (7), (2) and (g) lead to 

B < 3n - (12n - 3) 1/2 

or 

(11) 

(2) 

B < [ 3 n - ( 1 2 n - 3 )  '/2] 

since B is integral. But then, as with n < 12, we can use L e m m a  4 to 
complete the induct ion and conclude as follows. 

Theorem. In  any ground  state of V all bonds  are of unit length. 

As stated in Section 2, this together with Ref. 3 implies the following. 

Corol la ry .  The ground  states for V are subsets of the triangular 
lattice, thus crystalline. 
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